The DMC/DPC route to Polycarbonate Feeds: Integrated DMC-DPC Plant for Green Polycarbonate Production

Ajay Gami

versalis technology conference: value to compete
November 14, 15 2013

Bangkok, Thailand
Agenda

• Overview
• DMC
• DPC
• Technology Integration
• Summary
Technology Alliance

- Versalis SpA
- CB&I
Role of Partners

Technology Licensing

<table>
<thead>
<tr>
<th>Service</th>
<th>CB&I</th>
<th>Versalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing and licensing</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Process design</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Start-up assistance</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Catalyst supply</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Follow-up technical service</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Technology Maintenance

<table>
<thead>
<tr>
<th>Service</th>
<th>CB&I</th>
<th>Versalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process enhancements</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Catalyst R&D</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Technology Development</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Agenda

• Overview
• DMC
• DPC
• Technology Integration
• Summary
Proven history...

Licensed 100kTA DPC Plant for Polycarbonate Production in 2010

- **1983 Ravena Plant**
 5,000 tons/year Prototype DMC Plant

- **1988 Ravena Revamp**
 Production increased to 8,000 tons/year by adding second train

- **2002**
 Spain revamp to 96,600 tons/year

- **2007**
 Versalis/Lummus Partnership

- **2010**
 Licensed 100kTA DPC Plant for Polycarbonate Production in 2010

Licensed to GE for production of polycarbonates
Dimethyl Carbonate (DMC) – a “green” industrial chemical

- Benign solvent with low HSE impact
 - used in Li ion battery production
- Versatile reagent
- Excellent fuel additive properties
- Phosgene substitute in the production of aromatic polycarbonates (PC)
Phosgenation process
- Reaction of methanol with phosgene
- One European plant shut down after accident
- Chinese companies still operating

Carboxylation processes using an organic oxide
- Reaction of organic oxides with carbon dioxide yielding cyclic carbonates followed by trans-esterification with methanol
- Japanese process uses ethylene oxide
- Chinese companies use propylene oxide

Oxidative carbonylation processes using an oxidizing compound
- Reaction of methanol with carbon monoxide and an oxidizing compound
- Japanese process uses nitrous oxide (NO)
- Versalis/Lummus process uses oxygen (O₂)
<table>
<thead>
<tr>
<th>Route</th>
<th>Company</th>
<th>Main By-Product</th>
<th>By-Product Recycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosgenation</td>
<td>Chinese Companies</td>
<td>Hydrochloric Acid</td>
<td>Difficult</td>
</tr>
<tr>
<td>Carboxylation</td>
<td>Japanese</td>
<td>Ethylene Glycol</td>
<td>Difficult</td>
</tr>
<tr>
<td></td>
<td>Chinese Companies</td>
<td>Propylene Glycol</td>
<td>Difficult</td>
</tr>
<tr>
<td>Oxidative Carbonylation</td>
<td>Japanese</td>
<td>HNO$_3$ (Diluted Solution)</td>
<td>Difficult</td>
</tr>
<tr>
<td></td>
<td>Versalis Europa</td>
<td>CO$_2$</td>
<td>Easy</td>
</tr>
</tbody>
</table>
Using O₂ (Versalis/Lummus Process)

$$2\text{CH}_3\text{OH} + \text{CO} + 0.5 \text{O}_2 \rightarrow (\text{CH}_3\text{O})_2\text{C}=\text{O} + \text{H}_2\text{O}$$

Advantages

• 1-step reaction process
• No dangerous intermediates and by-products
• No catalyst make-up in normal operation
• Proven at large, world-scale capacity plants
• Typical plant capacity: 25-75 kta - larger plant capacity also possible
$2\text{CH}_3\text{OH} + \text{CO} + 0.5 \text{O}_2 \rightarrow (\text{CH}_3\text{O})_2\text{C}=\text{O} + \text{H}_2\text{O}$
• Single stage CSTR reactor operating at moderate pressure and temperature
• Employs partially soluble copper based catalyst
• *In situ* continuous catalyst regeneration – no catalyst make-up in normal operation
• Extensive energy integration
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol selectivity to DMC</td>
<td>>95%</td>
</tr>
<tr>
<td>Methanol selectivity to by-products</td>
<td>< 5%</td>
</tr>
<tr>
<td>Oxygen conversion per pass</td>
<td>>99%</td>
</tr>
<tr>
<td>Oxygen selectivity to DMC</td>
<td>>60%</td>
</tr>
<tr>
<td>Oxygen selectivity to CO₂</td>
<td>< 40%</td>
</tr>
</tbody>
</table>
Versalis/Lummus DMC Technology Advantages

• ‘On purpose’ technology
 – No byproducts formation

• Commercially well proven technology
 – Four commercial plants designed and operated
 – Currently three units operating (one in Japan and two in Spain)

• Inherently safe technology
 – Use of phosgene avoided
 – No intermediate chemicals unlike competing technologies
 – Reactor kept well outside of the flammability envelope

• Superior product quality
 – 99.9% purity with less than 5 wppm chlorine

• High purity DMC design option (HDMC)
 – Increase purity to 99.99+% with proprietary design
• Overview
• DMC
• DPC
• Technology Integration
• Summary
Diphenyl Carbonate (DPC) – key intermediate for polycarbonate production

- Phosgene substitute in the production of aromatic polycarbonates (PC)
- White solid powder at room temperature
Two step reaction

- **Step 1** – PMC formation: phenol + DMC \rightarrow PMC + methanol
- **Step 2** – DPC formation: 2 PMC \rightarrow DPC + DMC

Heat integration with DMC unit
Non-phosgene Route to Polycarbonate

- Non-phosgene route – avoids toxicity
- No use of chlorinated solvent – avoids environmental issues
- Improved quality of polycarbonate product suitable for optical grades
- No glycol byproducts
Versalis/Lummus DPC Technology Advantages

• Superior yield
 – 99.3% yield – best in the market

• Commercially well-proven technology
 – Four commercial plants designed and operated
 – Currently two units operating (in Spain)
 – New 100 kta DPC plant starting up in November 2013

• Superior product quality
 – 99.6% purity with less than 0.1 ppm titanium and iron
 – Better polycarbonate purity
Agenda

• Overview
• DMC
• DPC
• Technology Integration
• Summary
• DMC and DPC technologies can be integrated to achieve the best raw material and energy efficiencies
 – Methanol from DPC unit is recycled back to DMC unit along with some DMC
 • Avoids additional processing in DPC unit
 • Internal recycle of DMC and methanol
 – DPC unit uses high pressure steam and allows low pressure steam production
 • Low pressure steam is then used in DMC unit - overall reduction in energy requirements
• Overview
• DMC
• DPC
• Technology Integration
• Summary
• Unique position to offer full range of phenolic technologies for green polycarbonate production
• State of the art commercially proven technologies
• Only licensor/operator with over 45 years of operating experience
• Commercially well proven DMC-DPC technologies

• DMC technology
 – On-purpose DMC production technology
 – High product purity of 99.9%
 – HDMC (high purity DMC) of 99.99%+ design available

• DPC technology
 – High conversion of phenol per pass
 – Highest selectivity (99.3% yield) of phenol
 – Nearly stoichiometric consumption of DMC and phenol
 – Product purity of > 99.6%

• Integration options
 DMC ↔ DPC ↔ PC